VASP - Best Practices Workshop

Weine Olovsson
National Supercomputer Centre (NSC), Linköping University SNIC-PRACE training, online @NSC 22-23rd Feb 2022

VASP - Best Practices Workshop

National Supercomputer Centre (NSC)

NSC is part of:

- SNIC Swedish National Infrastructure for Computing (10 Univ.)
- Il.u linkÖping university liu.se

NSC partners: SAAB, SMHI, MET Norway

SMHI
SAAB

NSC academic clusters

Tetralith (2018-) $1908 \times 2 \times 16$ cores, Intel Xeon Gold 6130

- SNIC

Top500 no. 168 (74)
Sigma (2018-) $110 \times 2 \times 16$ cores, Intel Xeon Gold 6130

I. 0

BerzeLiUs (2021 -) Nvidia DGX SuperPOD, 60×8 A100 GPUs 1.0

About myself

- PhD in Physics 2005 @Uppsala Univ.
- PostDoc @Kyoto Univ. 4y, @Leoben Univ. 1y
- Application Expert @NSC, 2011 (50\%), 2016 (90\%)
- 10\% theoretical spectroscopy @IFM, LiU
- Electronic structure calculations
- @NSC: VASP, QE, GPAW, WIEN2k, ...

Information / Schedule

https://www.nsc.liu.se/support/Events/VASP workshop 2022/
Tuesday 22nd Feb
10:00 -11:00 Introduction \& Basic Theory
11:00-12:00 VASP - Basics
12:00-13:00 Lu n ch
13:00-15:00 Hands-on session (guided)
15:00-17:00 Hands-on session
Wednesday 23rd Feb
10:00-11:00 Running \& Performance
11:00-12:00 Cont., Utilities \& Summary
12:00-13:00 Lu n ch
13:00-15:00 Hands-on session (guided)
15:00-17:00 Hands-on session

10-15 min breaks every hour

Workshop organization

- Weine Olovsson - presentation
- Diana Iusan (UPPMAX) - helper (VASP)
- Pavlin Mitev (UPPMAX) - helper (VASP)
- Hamish Struthers - helper (general, account)
- support@nsc.liu.se - help with accounts

VASP - Best Practices Workshop

- Basic theory (PAW)
- General considerations ...at specific supercomputer centres
- Focus on practical aspects of running VASP
- Influential parameters, NPAR/NCORE, ALGO, NSIM, KPAR, ...
- Benchmarks, examples
- Common problems
... clickable links are underlined

Resources

- Wiki / Manual

Check in detail!

- Wiki
examples, presentations
- Forum
- Peter Larsson's (old) blog at NSC: \int info \&
https://www.nsc.liu.se/~pla/
- Peter Larsson's (old) blog at NSC: \int info \&
https://www.nsc.liu.se/~pla/

Find the links:
https://vasp.at/

Questions/trouble? support@nsc.liu.se,

1. Introduction \& Basic Theory

Weine Olovsson
National Supercomputer Centre (NSC), Linköping University SNIC-PRACE training, online @NSC 22-23rd Feb 2022

VASP - Best Practices Workshop

VASP: short background

- PAW-method
- DFT, post-DFT (HSE06, GW, ...)
- Born-Oppenheimer Molecular Dynamics
- widely used in Academia/Industry
- Efforts from Intel \& Nvidia for optimization
- $20-25 \%$ of Tetralith usage
... clickable links are underlined

Schrödinger Equation

Time-independent SE

$$
\begin{aligned}
& H \Psi=E \Psi, \\
& H=T+T_{n}+V_{i n t}+V_{n n}+V_{e x t}=-\frac{\hbar^{2}}{2 m_{e}} \sum_{i} \nabla_{i}^{2} \sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}+ \\
& +\sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J} \cdot e^{2}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}-\sum_{i, J} \frac{Z_{J} \cdot e^{2}}{\left|\mathbf{r}_{i}-\mathbf{R}_{J}\right|},
\end{aligned}
$$

solid ~1023 particles...

How to solve it?

"The general theory of quantum mechanics is now almost complete, ..."
"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."
"It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation"

Density Functional Theory (DFT)

Use electron probability density $n(\mathbf{r})$ instead of $\Psi \ldots$
(1) The potential $\mathrm{V}_{\text {ext }}$ of a system is determined uniquely, except for a constant by the ground state density $n(\mathbf{r})$
(2) The total energy functional $E[n]$, for a given $V_{\text {ext }}$, assumes its minimal value for the correct electron density $\mathrm{n}(\mathbf{r})$ of the ground state
Ansatz: $\quad E_{K S}[n]=\int d^{3} r V_{e x t}(\mathbf{r}) n(\mathbf{r})+T_{s}[n]+E_{x c}[n]+\iint d^{3} r d^{3} r^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$,
for independent electrons (mean field theory)

Exchange-Correlation Functional

All difficulties now included in the XC-functional, need to find an approximation...

$$
\begin{array}{rr}
E_{x c}^{L D A}[n]=\int d r^{3} n(\mathbf{r}) \varepsilon_{x c}(n(\mathbf{r})), & \begin{array}{r}
\text { Local Density Approximation (LDA) } \\
\text { homogeneous electron gas }
\end{array} \\
E_{x c}^{G G A}[n]=\int d^{3} r n(\mathbf{r}) \varepsilon_{x c}(n(\mathbf{r}),|\nabla n|), & \text { Generalized Gradient Approximation (GGA) }
\end{array}
$$

GGA: PBE, AM05, PBEsol, ... meta-GGA: SCAN, ... mixing with exact-X: HSE06, ...
many choices, commonly used are e.g. PBE, HSE06, ...

Using periodicity

- The Bloch theorem states that the one-electron wavefunctions obey the equation:

$$
\psi_{n \mathbf{k}}(\mathbf{r}+\mathbf{R})=\psi_{n \mathbf{k}}(\mathbf{r}) e^{i \mathbf{k} \mathbf{R}}
$$

where \mathbf{R} is any translational vector leaving the Hamiltonian invariant.

- \mathbf{k} is usually constrained to lie within the first Brillouin zone in reciprocal space.

The intractable task of determining $\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$ (for $N \sim 10^{23}$) has been reduced to calculating $\psi_{n \mathbf{k}}(\mathbf{r})$ at a discrete set of points $\{\mathbf{k}\}$ in the first BZ , for a number of bands that is of the order of the number of electrons per unit cell.

Using periodicity

A

B

C

$$
\begin{gathered}
\mathbf{b}_{1}=\frac{2 \pi}{\Omega} \mathbf{a}_{2} \times \mathbf{a}_{3} \quad \mathbf{b}_{2}=\frac{2 \pi}{\Omega} \mathbf{a}_{3} \times \mathbf{a}_{1} \quad \mathbf{b}_{3}=\frac{2 \pi}{\Omega} \mathbf{a}_{1} \times \mathbf{a}_{2} \\
\Omega=\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3} \quad \mathbf{a}_{i} \cdot \mathbf{b}_{j}=2 \pi \delta_{i j}
\end{gathered}
$$

from Marsman: https://www.vasp.at/mmars/day1.pdf

Self-consistent iterations

- two subproblems optimization of $\left\{\psi_{n}\right\}$ and $\rho_{i n}$
- refinement of density: DIIS algorithm
P. Pulay, Chem. Phys. Lett.

73, 393 (1980)

- refinement of wavefunctions: DIIS or Davidson algorithm

Why PAW?

- Goal: both accurate (LAPW) and fast (e.g. USPP) method
- Want to keep all-electron (AE) wave function
- Focus on valence electrons (frozen core) - chemical bonding
- Fast calculation in reciprocal space using FFT (plane waves)
- Solution: Projector Augmented Wave (PAW) method

Plane waves \& Augmentation

- Rapid wave oscillations close to nucleus
need too many plane waves!
- Strongly localised states at atoms

> therefore ->

- Split into interstitial and augmentation (sphere) regions smooth pw
- No overlap between spheres (one-centre expansion)
- PAW: Energy and potential independent wave functions

PAW Augmentation

from Blöchl: http://www2.pt.tu-clausthal.de/atp/downloads/lyngby2 paw.pdf

Transformation theory

True AE wave function and auxiliary PS wf related via transformation operator:

$$
\left|\Psi_{n}\right\rangle=\mathcal{T}\left|\tilde{\Psi}_{n}\right\rangle
$$

Kohn-Sham equation:

$$
H\left|\Psi_{n}\right\rangle=\left|\Psi_{n}\right\rangle \epsilon_{n}
$$

Can write Schrödinger-like equation:

$$
\mathcal{T}^{\dagger} H \mathcal{T}\left|\tilde{\Psi}_{n}\right\rangle=\mathcal{T}^{\dagger} \mathcal{T}\left|\tilde{\Psi}_{n}\right\rangle \epsilon_{n}
$$

$$
\langle A\rangle=\sum_{n} f_{n}\left\langle\Psi_{n}\right| A\left|\Psi_{n}\right\rangle=\sum_{n} f_{n}\left\langle\tilde{\Psi}_{n}\right| \mathcal{T}^{\dagger} A \mathcal{T}\left|\tilde{\Psi}_{n}\right\rangle
$$

Expectation values can be evaluated for true AE or auxiliary PS waves

Transformation operator

$$
\mathcal{T}=1+\sum_{R} \mathcal{S}_{R}
$$

TO unity in interstitial, outside augmentation sphere R

$$
\begin{aligned}
\left|\phi_{i}\right\rangle & =\left(1+S_{R}\right)\left|\tilde{\phi}_{i}\right\rangle \quad \text { for } \quad i \in R \\
S_{R}\left|\tilde{\phi}_{i}\right\rangle & =\left|\phi_{i}\right\rangle-\left|\tilde{\phi}_{i}\right\rangle
\end{aligned}
$$

$$
\Psi(\mathbf{r})=\sum_{i \in R} \phi_{i}(\mathbf{r}) c_{i} \quad \text { for } \quad\left|\mathbf{r}-\mathbf{R}_{R}\right|<r_{c, R}
$$

Inside sphere R, describe by AE partial waves, undetermined coefficients c_{i}

$$
\begin{aligned}
& \tilde{\Psi}(\mathbf{r})=\sum_{i \in R} \tilde{\phi}_{i}(\mathbf{r})\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle \quad \text { for } \quad\left|\mathbf{r}-\mathbf{R}_{R}\right|<r_{c, R} \quad \text { projector function } \\
& \left\langle\tilde{p}_{i} \mid \tilde{\phi}_{j}\right\rangle=\delta_{i, j} \quad \text { for } \quad i, j \in R \quad \text { requirement for above to hold }
\end{aligned}
$$

Transformation operator

$$
S_{R}|\tilde{\Psi}\rangle=\sum_{i \in R} S_{R}\left|\tilde{\phi}_{i}\right\rangle\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle=\sum_{i \in R}\left(\left|\phi_{i}\right\rangle-\left|\tilde{\phi}_{i}\right\rangle\right)\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle
$$

From using the previous relations

$$
\mathcal{T}=1+\sum_{i}\left(\left|\phi_{i}\right\rangle-\left|\tilde{\phi}_{i}\right\rangle\right)\left\langle\tilde{p}_{i}\right|
$$

Final expression for the transformation operator

$$
|\Psi\rangle=|\tilde{\Psi}\rangle+\sum_{i}\left(\left|\phi_{i}\right\rangle-\left|\tilde{\phi}_{i}\right\rangle\right)\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle=\left|\tilde{\Psi}_{n}\right\rangle+\sum_{R}\left(\left|\Psi_{R}^{1}\right\rangle-\left|\tilde{\Psi}_{R}^{1}\right\rangle\right)
$$

$$
\begin{aligned}
\left|\Psi_{R}^{1}\right\rangle & =\sum_{i \in R}\left|\phi_{i}\right\rangle\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle \\
\left|\tilde{\Psi}_{R}^{1}\right\rangle & =\sum_{i \in R}\left|\tilde{\phi}_{i}\right\rangle\left\langle\tilde{p}_{i} \mid \tilde{\Psi}\right\rangle
\end{aligned}
$$

Final expression for the true AE wf:

- one PS wf expanded in plane waves
- two atom centred localised functions

Partial waves

- all-electron partial waves $\left|\phi_{\alpha}\right\rangle$
- integrate Schrödinger equation outward
- have the correct nodal structure
- pseudo partial waves $\left|\tilde{\phi}_{\alpha}\right\rangle$
- smooth inside
- identical to ae partial waves outside
- n-ncore nodes
- usually constructed by adjusting an dependent potential

Projector functions

- Localised
- Angular momentum of partial waves

Figure 1: Top: projector functions of the Cl atom for two s-type partial waves, middle: p-type, bottom: d-type.

Blöchl et al. https://arxiv.org/abs/cond-mat/0201015v2

Wave functions

Figure 2: Bonding p- σ orbital of the Cl_{2} molecule and its decomposition of the wave function into auxiliary wave function and the two one-center expansions. Top-left: True and auxiliary wave function; top-right: auxiliary wave function and its partial wave expansion; bottom-left: the two partial wave expansions; bottom-right: true wave function and its partial wave expansion.

More examples

FIG. 1. Partial waves and projectors for Mn. Left panel: AE partial waves (solid lines) and PS partial waves (dashed and dash-dotted lines). The "first" PS partial wave is a dash-dotted line. Right panel: first (solid line) and second (dashed line) projector functions. (a) and (d) show the results for the first and the second partial wave of the s angular momentum channel, respectively, (b) and (e) for the p channel, and (c) and (f) for the d channel. $3 s$ and $3 p$ functions are treated as valence states. Functions are scaled individually.

PAW Augmentation

$$
\begin{aligned}
& \left|\widetilde{\psi}_{n}\right\rangle \\
& \left|\widetilde{\psi}_{n}\right\rangle-\sum_{i}\left|\widetilde{\phi}_{i}\right\rangle\left\langle\widetilde{p}_{i} \mid \widetilde{\psi}_{n}\right\rangle \\
& \left|\widetilde{\psi}_{n}\right\rangle-\sum_{i}\left|\widetilde{\phi}_{i}\right\rangle\left\langle\widetilde{p}_{i} \mid \tilde{\psi}_{n}\right\rangle+\sum_{i}\left|\phi_{i}\right\rangle\left\langle\widetilde{p}_{i} \mid \widetilde{\psi}_{n}\right\rangle
\end{aligned}
$$

from Marsman: https://www.vasp.at/mmars/day1.pdf

PAW Augmentation

- Character of wavefunction: $c_{l m \epsilon}=\left\langle\tilde{p}_{l m \epsilon} \mid \tilde{\psi}_{n}\right\rangle$

$$
\left|\psi_{n}\right\rangle=\left|\tilde{\psi}_{n}\right\rangle \quad-\sum\left|\tilde{\phi}_{l m \epsilon}\right\rangle c_{l m \epsilon}+\sum\left|\phi_{l m \epsilon}\right\rangle c_{l m \epsilon}
$$

- Same trick works for
- Wavefunctions
- Charge density
- Kinetic energy
- Exchange correlation energy
- Hartree energy

Total Energy

$$
E=\tilde{E}+E^{1}-\tilde{E}^{1}
$$

$$
\begin{aligned}
& \tilde{E}=\sum_{n} f_{n}\left\langle\tilde{\psi}_{n}\right|-\frac{1}{2} \Delta\left|\tilde{\psi}_{n}\right\rangle+E_{x c}\left[\tilde{\rho}+\hat{\rho}+\tilde{\rho}_{c}\right]+ \\
& E_{H}[\tilde{\rho}+\hat{\rho}]+\int v_{H}\left[\tilde{\rho}_{Z C}\right](\tilde{\rho}(\mathbf{r})+\hat{\rho}(\mathbf{r})) d^{3} \mathbf{r}+U\left(\mathbf{R}, Z_{\text {ion }}\right) \\
& \underset{\text { local }}{\tilde{E}^{1}}=\sum_{\text {sites }}\left\{\sum_{(i, j)} \rho_{i j}\left\langle\tilde{\phi}_{i}\right|-\frac{1}{2} \Delta\left|\tilde{\phi}_{j}\right\rangle+\overline{E_{x c}\left[\tilde{\rho}^{1}+\hat{\rho}+\tilde{\rho}_{c}\right]}+\right. \\
& \text { radial grid } \\
& \left.\overline{E_{H}\left[\tilde{\rho}^{1}+\hat{\rho}\right]}+\int_{\Omega_{r}} v_{H}\left[\tilde{\rho}_{Z c}\right]\left(\tilde{\rho}^{1}(\mathbf{r})+\hat{\rho}(\mathbf{r})\right) d^{3} \mathbf{r}\right\} \\
& \underset{\text { local }}{E^{1}}=\sum_{\text {sites }}\left\{\sum_{(i, j)} \rho_{i j}\left\langle\phi_{i}\right|-\frac{1}{2} \Delta\left|\phi_{j}\right\rangle+\overline{E_{x c}\left[\rho^{1}+\rho_{c}\right]}+\right. \\
& \text { radial grid } \\
& \left.\overline{E_{H}\left[\rho^{1}\right]}+\int_{\Omega_{r}} v_{H}\left[\rho_{Z c}\right] \rho^{1}(\mathbf{r}) d^{3} \mathbf{r}\right\}
\end{aligned}
$$

from Marsman: https://www.vasp.at/mmars/day1.pdf

What are the approximations?

- Frozen core can be relaxed: Marsman \& Kresse, JCP 125, 104101 (2006)
- Plane wave expansion, energy cut-off $\quad \frac{1}{2}|\mathbf{G}+\mathbf{k}|^{2}<E_{\text {cutoff }}$
- Partial wave expansion (1-2 per angular momentum)

PAW: Things to note

- All-electron method (valence states orthogonal to core)
- Frozen core approximation
- Plane waves: FFT in reciprocal space, fast calculations
- Forces from total energy expression
- PAW point-of-view: LAPW special case, PP an approximation

Accuracy

Compare with FPLAPW method (WIEN2k):

0.2	0.1	$\Delta(\mathrm{PAW})_{\text {(VASP }}=1.9 \mathrm{meV} /$ atom										0.3	0.3	10.6	8.3	1.5	
	${ }^{\text {m }}$											${ }_{\sim}^{\sim}$		-			
0.0	0.7											0.3	2.0	3.8	3.3	4.0	0.1
0.1	0.2	0.4	0.9	1.3	3.1	1.4	3.4	3.4	2.0	0.4	0.3	0.2	2.4	1.7	1.5	1.5	0.1
nb	st	v	u	Nb	m	TE	¢u	ph	pa	${ }_{48}$	${ }^{4}$	${ }^{\text {m }}$	sn	sb	${ }^{\text {re }}$	1	
0.1	0.1	0.5	2.7	7.3	5.5	8.3	2.3	5.4	4.4	4.1	1.4	0.4	0.2	0.1	0.5	0.9	0.1
cs	${ }^{\text {®a }}$	${ }^{\text {u }}$	H1	ra	w	pe	os	$\stackrel{1}{4}$	${ }^{\text {p }}$	${ }^{\text {aut }}$	H8		${ }^{\text {po }}$		mo	${ }^{\text {ar }}$	
0.3	0.7	4.3	1.2	1.0	3.5	4.3	3.8	1.9	2.5	5.9	0.5	0.4	0.6	0.4	0.4		0.0

				第			A								$\begin{aligned} & \text { 总 } \\ & 0 \stackrel{0}{0} \\ & 0 \\ & 0.8 \\ & 04.4 \end{aligned}$													PP 						$\begin{gathered} P_{0} \\ \text { 曾 } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	
ய	E1k		0.3	0.6	0.6	0.3	0.6	3.9	1.0	1.00 .9	0.91 .7	1.71 .8	80.3	0.9	9 3.8	81.3	1.1 .5	1.2	120.6	1.6	0.9	2.1	0.4	1.1	11.1	1.0	2.5	0.40 .4	0.46 .46 .3	13.5	2.21	1.12 .1	2.10 .7	15	1.41 .4
	exciting	0.3		0.5	0.5	0.1	0.5	3.9	1.00	0.90 .8	0.81 .7	1.718	80.2	0.8	83.8	81.3	1.31 .5	1.2	20.6	1.6	0.8	2.1	0.60 .4	1.0	101.1	1.0	2.5	0.50 .3	$\begin{array}{lllll}0.3 & 6.4 & 6.3\end{array}$		2.21	1.12 .1	0.7	1.4	1.31 .4
	－aims／tight	0.6	0.5		0.0	0.5	0.7	3.8	0.9	1.10 .7	0.71 .8	1.8	18	1.0	O 3.8	81.3	1.1 .6	1.3	0.7	1.7	1.0	2.2	0.80 .6		11.2	1.1	2.6	0.70 .6		13	2.21	1.22 .0	0.8	1.5	1.41 .5
	ms／really＿tight	0.6	0.05	0.0		0.5	0.7	3.8	0.91	1.1	1.8	1.81 .8	1805	1.0	O 3.8	81.3	31.6	1.3	0.7	1.7	1.0	2.2	0.80 .6		11.2	1.1	2.6	0.70 .6	$\begin{array}{lllll}0.6 & 6.5 & 6.3\end{array}$	13	2.21	1.2	0.8	1.5	1.41 .5
	FHI－aims／tier2	0.3	30.1	10.5	0.5		0.5	3.9	0.9	0.9	1.7	1.71 .8	80.2	0.8	83.8	81.3	1.3	1.2	0.6	1.6	0.8	2.0	0.60 .4	0.9	91.0	0.9	2.5	0.50 .3	$\begin{array}{llllll}0.3 & 6.4 & 6.3\end{array}$		2.21	1.1	2.10 .7	1.4	1.31 .4
	Fleur	0.6	0.0 .5	0.7	0.7	0.5		3.6	0.80	0.8	1.4	1.41 .5	50.4	． 9	93.5	51.3	131.5	1.0	0.6	1.5	0.8	1.9	0.70 .6	1.0	1.0	1.0	2.6	0.7	6.56 .3		2.0	1.0	1.90 .6	1.3	1.31 .3
	FPLo／defaul	3.9	9 3.9	3.8	3.8	3.9	3.6		3.13	3.63 .3	3.32 .9	2.92 .5	5	4.0	03.1	14.1	4.1	3.4	3.6	3.3	3.9	2.8	3.94 .0	4.0	04.0	4.1	5.8	4.13 .9	$\begin{array}{llll}3.9 & 7.97 \\ 7.2\end{array}$	13.0	4.93	3.6	3.7	4.1	4.14 .1
	FPLO／T＋F	1.0	10 1.0	0.9	0.9	0.9	0.8	3.1		0.80 .7	0.71 .4	1.414	40.9	1.3	133	41.7	71.9	1.0	00.9	1.5	1.3	1.9	1.21 .0		131.3	1.3	3.1	1.1	6.66 .4		2.41	1.21 .8	1.81 .0	1.6	1.61 .6
	FPLO／T＋F＋s	1.0	00 0.9	1.1	1.1	0.9	0.8	3.6	0.8		1.5	1.5	50.9	1.3	33.5	51.7	71.8	1.2	120.9	1.4	1.3	1.9	1.21 .0			1.4	2.9	1.0	6.4		2.31	1.21 .8	1.81 .0	1.6	1.61 .6
	RSPt	0.9	90.8	0.7	0.8	0.8	0.6	3.3	0.7	0.9		1.3	30.8	1.1	3.4	1.5	1.7	0.9	0.7	1.6	1.1	1.9	1.00 .8	1.2	121.3	1.3	3.0	1.00 .8	0.86 .76 .5	13.2	2.21	1.1	1.80 .8	1.5	1.51 .5
	N2k／defaul	1.7	171.7	1.8	1.8	1.7	1.4	2.9	1.4	1.51 .3	1.3	0.9	1.7	1.9	193.2	22.2	22.3	1.3	31.5	1.8	1.8	1.7	1.81 .8	1.9	191.9	1.9	3.8	1.8	7.17 .0		28	1.71 .9	1.91 .6	2.1	2.12 .1
	N2k／enhanced	1.8	181．8	1.8	1.8	1.8	1.5	2.5	1.41.	1.5	0.9	0.9	1.8	2.0	2.6	62.1	12.2	1.1	1.5	1.6	1.8	1.4	2.0		02.0	2.0	3.8	2.0	$\begin{array}{lll}6.9 & 6.9\end{array}$	12.3	2.8	1.6	1.51 .7	1.9	1.91 .9
	2 k	0.3	30.2	0.5	0.5	0.2	0.4	3.9	0.9	0.90 .8	0.81 .7	1.71 .8		0.8	83.8	81.3	31.5	1.2	20.5	1.6	0.8	2.0	0.70 .3	0.9	1.0	1.0	2.5	0.50 .3		13.4	2	1.02 .0	2.00 .6	1.4	1.31 .4
$\underset{\square}{\gtrless}$	GBRv12／ABI	0.9	0.90	1.0	1.0	0.8	0.9	4.0	1.3	1.31 .1	1.9	1.92 .0	0.8		4.1	11.5	1.6	1.5	1.1	2.0	1.1	2.3	1.0	0.7	70.8	0.7	2.8	1.0	6.3	15.12	2	1.5	2.41 .1	1.8	1.71 .8
	W06／GPA	3.8	83.8	3.8	3.8	3.8	3.5	3.1	3.43	3.5	3.2	3.22 .6	23.8	4.1		3.6	3 3.5	3.2	3.5	3.0	3.8	2.8	3.73 .8	4.0	403	4.0	5.6	3.9	7.47 .6	12	4.53	$3.0 \quad 3.0$	3.03 .6	3.7	3.83 .7
	GPano9／abinit	1.3	131.3	1.3	1.3	1.3	1.3	4.1	1.7	1.7	1.52 .2	1	11.3	1.5	3.6		0.6	1.5	51.4	2.0	1.5	2.4	1.41 .3	1.6	161.6	1.6	2.5	1.4	6.56 .1	13.6	2.31.	1.72 .3	1.2	1.7	1.71 .7
	GPawo9／GPaw	1.5	51.5	1.1 .6	1.6	1.5	1.5	4.1	1.9	1.81 .7	1.72 .3	2.3	21.5	1.6	3.5	50.6		1.6	61.5	2.1	1.6	2.5	1.5		71.7	1.7	2.7	1.5	6.56 .1		2.51	1.82 .3	1.5	1.8	1.81 .8
	Jtho1／Abinit	1.2	121.2	1.3	1.3	1.2	1.0	3.4	1.0	1.20 .9	0.91 .3	1.3	11.2	1.5	53.2	21.5	1.6		0.9	1.5	1.4	1.9	1.41 .3		151.5	1.5	3.0	1.4	6.56 .5	13.0	2.21	1.3	1.51 .2	1.4	1.41 .4
	Jтhoz／abinit	0.6	0．6 0.6	60.7	0.7	0.6	0.6	3.6	0.9	0.90 .7	1.5	1.51 .5	0.5	1.1	13.5	5 1.4	1.5	0.9		1.4	0.9	1.9	0.70 .7	1.2	121.2	1.2	2.6	0.7	6.36 .2		2.2	1.2	． 9	1.4	1.41 .4
	PSIib031／оE	1.6	1.6	1.7	1.7	1.6	1.5	3.3	1.51	1.41 .6	1.8	1.8	1.61 .6	2.0	3.0	02.0	2.1	1.5	1.4		1.6	1.5	1.61 .6	2.0	201.9	2.0	3.1	1.61 .5			2.41	1.6	1.5	2.1	2.22 .1
	PSlib100／Q	0.9	0.8	1.0	1.0	0.8	0.8	3.9	1.3	1.3	1.8	1.81 .8	80.8	1.1	13.8	81.5	51.6	1.4	0.9	1.6		1.7	1.00 .8	1.1	11.2	1.2	2.2	0.9	6.15 .9		2.11	1.4	1.90 .9	1.6	1.61 .6
	vASP2007／VAS	2.1	12.1	2.2	2.2	2.0	1.9	2.8	1.9	1.9	1.91 .7	1.71 .4	42.0	2.3	2.8	2.4	2.5	1.9	1.9	1.5	1.7		1.82 .1	2.1	12.2	2.1	3.5	2.1	6.56 .1	12.	3.0	2.2	1.9	2.5	2.42 .5
	VASP2012／VASP	0.7	70.6	0.8	0.8	0.6	0.7	3.9	1.2	1.2	1.01 .8	1.81 .9	190.7	1.0	103.7	7	6		140.7	1.6	1.0	1.8	0.7		11.2	1.1	2.5	0.80 .6	$\begin{array}{llllll}0.6 & 6.5 & 6.3\end{array}$		2.2	1.22 .1	2.10 .9	1.6	1.6
	VASPGW2015／vasp	0.4	0.4	0.6	0.6	0.4	0.6	4.0	1.01	1.0	1.8	1.82 .0	0.3	0.9	93.8	1.3	31.5	1.3	0.7	1.6	0.8	2.1	0.7	1.1	12.1	1.1	2.6	0.5	6.66 .2	13.7	2.211	1.12 .2	2.20 .7	1.5	1.41 .5
$\frac{0}{0}$	GBRV12／0	1.1	1.10	1.1	1.1	0.9	1.0	4.0	1.3	1.4	1.9	1.92 .0	200.9	0.7	4.0	1.6	1.7	1.5	1.2	2.0	1.1	2.1	1.11 .1		0.4	． 1	2.6	1.00 .8	$0_{0} 0.8 .36 .4$	15.3	2.3	14	2.11 .2	1.6	1.51 .6
	GBRV14／CASter	1.1	$\begin{array}{ll}1 & 1.1\end{array}$	1.2	1.2	1.0	1.0	4.0	1.31	1.41 .3	1.31 .9	1.920	20 1.0	0.8	83.8	81.6	1.61 .7	71.5	51.2	1.9	1.2	2.2	1.1	0.4		0.3	2.6	0.9	6.3		2.4	1.62 .1	2.11 .1	1.5	1.51 .5
	GBRv14／8	1.0	10 1.0	1.1	1.1	0.9	1.0	4.1	1.3	1.4	1.31 .9	1.920	1.0	0.7	4.0	01.6	1.7	1.5	51.2	2.0	1.2	2.1	1.1	0.1	10.3		2.6	1.0	6.36 .3		2.31	1.4	2.11 .2	1.6	1.51 .5
	otfg7／Caster	2.5	252.5	2.6	2.6	2.5	2.6	5.8	3.12	2.93 .0	$3.0 \quad 3.8$	3.838	82.5	2.8	85	62.5	2.7	3.0	2.6	3.1	2.2	3.5	2.52 .6	2.6	2.6	2.6		2.2	4.857		2.72	2.93 .4	3.42 .4	2.6	2.62 .6
	otfg9／Caster	0.4	4 0.5	50.7	0.7	0.5	0.7	4.1	1.1	1.01 .0	1.01 .8	2.0			3.9	1.4	41.5	． 4	0.7	1.6	0.9	2.1	0.80 .5		100.9	1.0	2.2		6.36 .2		2.21	1.12 .1	2.10 .8	1.5	1.41 .5
	Sssp／e	0.4	0.0 .3	30.6	0.6	0.3	0.5	3.9	1.0	0.9	1.6	1.61 .7	70.3	0.7	73.6	1.3	31.4	41.1	10.6	1.5	0.7	1.9	0.60 .4	0.8	80.9	0.8	2.4	0.6	6.46 .2	13.6	2.11	1.02 .0	2.00 .7	1.4	1.21 .3
	$\mathrm{db} / \mathrm{CA}$	6.4	6．4	6.4	6.5	6.4	6.5	7.9	6.66	6.46 .7	6.77 .1	7.16 .9	69.4	6.4	4.4	76.5	56.5	6.5	56.3	6.1	6.1	6.5	6.56	6.3	6.2	6.3	4.8	6.36 .4	9.6	16.3	6.66	6.16 .6	6.66 .4		5.85 .7
	vab2／DaCAPO	6.3	6.3	6.3	6.3	6.3	6.3	7.2	6.4	6.46	6.57 .0	7.06 .9	96.2	6.3	37.6	66.1	6.1	6.5	6.2	5.8	5.96	6.1	6.36 .2	6.4	6.3	6.3	5.7	6.26 .2	6．2 9.6	17.9	6.2	5.9	6.46 .1	6.5	6.56 .5
$\frac{n}{0}$	FHI98pp／A			23．6			13.21	13.0		13.013 .2						123 13.6	1313.6	613.0	1313.4	22． 12						15.2	24．5	13.613 .6	13.616 .317 .9		14.3	8.513 .0	13.013 .3	3.3	13．613．4
	hgh／abinil	2.2	22.2	22.2	2.2	2.2	2.0	4.9	2.4	2.32 .2	2.22 .8	2.828	2.1	2.5	54.5	52.3	2.5	2.2	22.2	2.4	2.1	3.0	2.22 .2			2.3	2.7	2.22 .1	6.2	14.3		0.9	2.62 .0	2.0	2.020
	HGH－NLCC／BigDFT	1.1	1	1.2	1.2	1.1	1.0	3.6	1.2	1.2	1.7	1.71 .6		1.5	3.0	01.7	71.8	1．3	1.1 .2	1.6	1.4	2.2	1.21 .1		141.6	1.4	2.9	1.11 .0	0 6.1 5.9		0.9		1.8	1.5	1.41 .4
	MBK2013／OpenmX	2.1	2.1	2.0	2.0	2.1	1.9	3.2	1.818	1.8	1.9	1.9	52.0	2.4	3.0	2.3	2.3	1.5	． 1.9	1.7	1.9	1.7	2.12 .2		12.1	2.1	3.4	2.12 .0	6.66 .4	13.0	2.6	1.8	2.0	2.2	2.22 .2
	OnCVPSP（PDD．1）／Abinit	0.7	070.7	0.8	0.8	0.7	0.6	3.7	1.01	1.00 .8	0.81 .6	1.61 .7		． 1	6	61.2	1.5	1.2	120.7	1.5	0.9	1.9	0.90 .7			1.2	2.4	0.80 .7	$\begin{array}{lllll}0.7 & 6.4 & 6.1\end{array}$		2.	1.12 .0	2.0	1.3	1.41 .3
	VPSP（SG15）1／CASTEP	1.5	1.4	1.5	1.5	1.4	1.3	4.1	1.616	1.61 .5	1.5	1.9	9	1.8	18．7	71.7	1.8	1.4	141.4	2.1	1.6	2.5	1.61 .5		6	1.6	2.6	1.51 .4	1.4596		2.0	1.52 .2	2.21 .3		0.30 .1
	OncVPSP（SG15） $1 / \mathrm{Q}$		141.3	1.4	1.4	1.3	1.3	4.1	1.61 .6	1.61 .5	1.52 .1	2.11 .9	1.3	1.7	3.8	81.7	1.8	1.4	141.4	2.2	1.6	2.4	1.51 .4	1.5	151.5	1.5	2.6	1.41 .2	1.2 5.8		2	2.2	2.21 .4	0.3	0.3
	Prsp（									1.61 .5													1.61 .5			1.5		1.51 .3	$\begin{array}{lllll}1.3 & 5.7 & 6.5\end{array}$						

DFT codes using PAW

- VASP license
- Abinit free
- Quantum Espresso free
- GPAW free
- + more

Importance of good potential database

Refs.

- Good presentations by Marsman and Blöchl
- Blöchl PRB 50, 17953 (1994)
- Blöchl et al. https://arxiv.org/abs/cond-mat/0201015v2
- Kresse \& Joubert PRB 59, 1758 (1999)
- Holzwarth et al. PRB 55, 2005 (1997)
- Martin, Electronic Structure, Chapter 11.1, 13.2
https://vasp.at/

