

Procurements 2017

Pre-announcement:

Supercomputer AC2018 (LiU-2017-02204)

- General computing resource for Swedish academic research
- Funded by Swedish National Infrastructure of Computing (SNIC).
- Replacing current SNIC-resource Triolith (and possibly LiUs Gamma) at NSC
- Contract size: 90 100 MSEK
- Installation in two phases at NSC during 2018.

Supercomputer NWP18 (LiU-2017-02205)

- Computing resource for daily numerical weather prediction for MetCoOp and climate research for MET Norway.
- Funded by Swedish Meteorological and Hydrological Institute (SMHI) and Norwegian Meteorological Institute (MET Norway).
- Replacing Frost(Bifrost), Alvin(Allvis), and Elvis(Allvis) at NSC.
- Contract size: 35 40 MSEK
- Installation of two systems at NSC (or NSC/SMHI) during 2018.

Pre-announcments, Benchmarks, Request for Information and an early draft of the Invitation to Tender are available at www.nsc.liu.se/about/procurement

Procurement Schedule

Procurement of AC2018 and NWP18 will be performed in parallel, just 1-2 weeks apart.

- 2017-06-15 Pre-announcement
- 2017-07-10 Invite to participate (30 days to answer)
- 2017-08-21 Invite to tender (40-45 days to answer)
- 2017 Oct-Nov Negotiation
- 2017 Nov Contract

Evaluation of Tenders

Application performance / Cost

- Application Performace
 - Throughput performance of benchmarks
- Cost
 - Investment
 - Installation
 - Service & Support
 - Estimated power, cooling, and facility costs over four years.
 - Additional costs (e.g. complement cooling)

Performance and Cost will be validated at delivery.

AC2018

- Will become the largest and fastest HPC resource in Sweden
- General purpose computing resource for researchers in Sweden
 - Focus on performance of the most used applications
 - Long-tail of legacy applications
- Benchmarks (reflects >50% of current usage):
 - VASP, Gromacs, CP2K
- Deliveries
 - Delivery #1: Central equipment and capacity on the level of current resource Triolith (currently 1017 dual socket SandyBridge)
 - Completely delivered and taken into production before 1 July 2018
 - Delivery #2: Extending the capacity.
 - After Triolith has been decommissioned
 - Optional:
 - Additional capacity, additional resource

AC2018 Technical Details

- System Software: NSC Cluster System Environment (CSE) based on CentOS.
- Storage: Connect to existing storage
 - 4 x GSS26 (eight servers) from IBM/Lenovo running Spectrum Scale, Native RAID (GNR). Today connected to Triolith with IB FDR.
- Density: Minimum of 15 kW per (normal size) rack (peak).
- GPU: X% of the budget can be used for servers with GPUs if they achieve better performance on the VASP and Gromacs benchmarks.
 - A few GPUs for development.
- Large Mem: Approx. 5% of computing servers equipped with larger memory.
- Possible architectures:
 - CPU: Intel Xeon, Intel Xeon Phi, AMD Epyc, IBM Power9, ARM, ...
 - Network: Mellanox FDR, EDR, Intel OPA, Eth RoCE ...
 - Cooling: Air, Water, Immersed

NWP18

- Main focus: Meteorological Co-operation on Operational Numerical Weather Prediction (MetCoOp)
 - Collaboration between SMHI, MET Norway and Finnish Meteorological Institutet (FMI).
 - Will be operative in late 2018.
 - NWP18 will be used together with a computing resource at FMI as a joint resource for HARMONIE-AROME Meteorological Ensamble Prediction System (MEPS) for the common regions of Sweden, Norway and Finland
- Benchmarks:
 - HARMONIE-AROME, NEMO
- Deliveries
 - System #1: Installation at NSC
 - System #2: Installation at NSC or SMHI.

NWP18 Technical Details

- Two systems (System #1 at NSC, System #2 at NSC or SMHI):
 - System #1, part A: Daily Numerical Weather Prediction (MetCoOp)
 - System #1, part B: Climate Research (MET Norway)
 - System #2: Daily Numerical Weather Prediction (MetCoOp)
- System Software: NSC Cluster System Environment (CSE) based on CentOS.
- Storage: Connect to existing storage
 - 1 x GSS26 (eight servers) from Lenovo running Spectrum Scale, Native RAID. Today connected to Triolith with IB FDR.
 - Additional storage will be procured separately
- Density: Minimum of 15 kW per (normal size) rack (peak).
- SMHI computer room has a upper limit of 125 kW. (system 1A and 2 has to be diveded accordingly).
- Possible architectures:
 - CPU: Intel Xeon, Intel Xeon Phi, AMD Epyc, IBM Power9, ...
 - Network: Mellanox FDR, EDR, Intel OPA, Eth RoCE
 - Cooling: Air, (Water)

Preliminary Requirements (work in progress)

Service & Support

Requirements

- Installed equipment should be working and provide its indended service.
- Reduce and limit the time personnel at NSC spend on handling typical, recurring errors and failures (e.g. memory faults, PSUs failures) during the life-time of the system.
 - This include time spent on fault diagnostics, error reporting, ticket handling, logistics of parts (RMA handling), waiting for response, etc.
- The contractor is responsible for all advanced troubleshooting of equipment and components.
- Efficient escalation management to quickly resolve systematic errors

Service & Support

Service Levels

- Central or critical equipment
 - Spares on site and 4h or 8h response.
- The bulk of computing capacity
 - Minor faults affecting one server: replace within a week.
 - Major faults affecting half a rack or more: next business day

Deliveries (suggestion)

A Delivery

- Shipping and installation: 2 weeks
- Functional Tests: 2 4 weeks
 - acceptance testing
- Stability Test-period: 2 months
 - uptime, counting faults

Deliveries

- Pre-delivery of solution samples for testing and porting
- Tetralith #1: March June
 - Core parts + replacing Triolith capacity
- Tetralith #2: July October
 - Extending capacity
- NWP18 System #1: May August
 - Installation at NSC (about 60-70% of NWP18)
- NWP18 System 2: June September
 - Installation at NSC or SMHI